SUPPLEMENTARY DATA

Preclinical evaluation of miR-15/107 family members as multifactorial drug targets for Alzheimer's disease

	Parsi et al.
This files contains:	
1) Supplementary Methods	
2) Supplementary Figures and legends	
3) Supplementary References	
4) Supplementary Tables and legends	

SUPPLEMENTARY METHODS

Patient information

All human and mouse studies were approved by the national ethical committee protocols and in agreement with the Université Laval ethical committee. Brain tissue from patients came from the Douglas Bell Canada Brain Bank, Montreal, Canada, and included non-dementia controls and AD cases, based on neuropathological diagnosis. Patient information is available elsewhere [1, 2]. Blocks of tissue from temporal cortex, prefrontal cortex and hippocampus were dissected and snap frozen in liquid nitrogen until use.

SUPPLEMENTARY FIGURES

Step 1

Screening and target identification (all family members)

TargetScan software **BIOINFORMATICS**

- APP 3'UTR - BACE1 3'UTR

HEK293 cells **LUCIFERASE ASSAYS**

- APP 3'UTR - BACE1 3'UTR
- HEK239-APPSwe cells **WESTERN BLOT**
- Aβ (total)
- APP C-terminal fragments

Step 2

Validation and functional studies (top candidate)

HEK293, Neuro2a, HT22 cells **WESTERN BLOT**

- APP - BACE1
- Tau

Neuro2a- APPSwe cells

ELISA

- Aβ1-40 peptides
- Aβ1-42 peptides

Step 3

Preclinical proof-of-principle studies (top candidate)

Wildtype mouse cortex, hippocampus striatum, brainstem

WESTERN BLOT

- APP
- BACE1
- Tau
- Nicastrin
- Presenilin-1
- Pen2

Wildtype mouse cortex, hippocampus striatum, brainstem

qRT-PCR

- APP
- BACE1
- Tau
- Inflammation markers

Wildtype mouse cortex, brainstem

PROTEOMICS

- iTRAQ
- Biological pathways (IPA)
- Target identification (miRWalk)
- Rip Chip Validation in brain and cells

Supplementary Figure 1. Experimental overview of current study.

Supplementary Figure 2. (A) Endogenous miR-15a, miR-15b, miR-16, miR-195, miR-424, miR-497 and miR-103 levels were quantified by qRT-PCR in HEK293-APPSwe cells. U48 small nucleolar RNA (RNU48) was used as normalizing control. The relative expression was calculated using the ΔΔCt method (using miR-15a as 1 fold). **(B)** qRT-PCR analysis of ectopic miR-16 family members following transfection in HEK293-APPSwe cells. Relative expression is shown (using endogenous miRNAs as 1 fold). RNU48 was used as normalization control. **(C)** qRT-PCR analysis of transfected miR-16 in various cells lines used in this study. Relative quantifications are shown (using endogenous miR-16 as 1 fold). RNU48 was used as normalization control. **(D)** ELISA of soluble Aβ40 and Aβ42 in Neuro2a-APPSwe cells transfected with miR-16 or SCR mimics. Measurements were done 48h post-transfection. Statistical significance was determined by a *Student paired t* test (* = p<0.05, *** = p<0.001). All data are shown as mean± SEM from two or more independent experiments in triplicate.

Supplementary Figure 3.

(A, B) Western blot analysis of endogenous full-length APP in native HEK293 cells following mimic overexpression at 50 nM final concentration. Shown here are results at 48h post-transfection. Statistical significance was determined by a *Student paired t* test (* = p<0.05, *** = p<0.001). Data are shown as mean \pm SEM from two experiments performed in triplicate. Quantifications are shown using Gapdh as normalization control.

Supplementary Figure 4. Downregulation of the miR-16/15a cluster in AD. (A) Schematic representation (not to scale) of the DLEU2 transcript encoding miR-15a and miR-16-1 (upper panel). Close-up of the amplified region (lower panel). Primer sequences are Forward: CTCAGCAATTCTTACCTTTCTTAC; Reverse: TTCCTGGATACTCTCCTGTAGTC. (B) qRT-PCR of DLEU2 mRNA from non-demented Controls (N=7) and AD individuals (N=9). Relative expression is shown (using Controls as 1 fold). RNU48 was used as normalization control. All samples were measured in triplicate. Statistical significance was determined by a *Mann-Whitney U* test (* = p<0.05). (C) Validation by conventional PCR in frontal cortex tissue. Shown here are two control and two AD individuals. Minus (-) RT was used as PCR negative control.

Supplementary Figure 5. Validation of miR-16 mimic specificity *in vivo*. **(A)** Representative western blot analysis of mice treated with chemically-modified miR-16 mimics (miR-16 mod.), harbouring 2O-Me modifications on both sense and antisense stands (50μg/day for 7 days, n=8 mice/group). Shown here is the hippocampus. Similar negative results were obtained in the cortex, brainstem and striatum. Control mice received vehicle alone (0.9% saline) **(B)** qRT-PCR analysis of miR-16 mod.-treated mice. These results indicate that miR-16 expression levels are not significantly increased following treatment (n=8/group), consistent with the notion that modified mimics are not functional. Data are shown as mean± SEM.

Supplementary Figure 6. (A) Levels of endogenous miR-16 in the different brain regions of control mice (i.e., baseline levels). These experiments were performed from control (saline) treated mice. **(B)** qRT-PCR analysis showing ectopic miR-16 expression and distribution following mimic delivery. These results indicated a strong increase in miR-16 levels (over endogenous levels) in the hippocampus (106 fold), cortex (34 fold), striatum (27 fold), and brainstem (27 fold). **(C)** RIP-Chip was performed on cortex and brainstem of miR-16 mimic-treated mice (n=3/group). We observed a 3.63 and 2.66 fold enrichment in the cortex and brainstem, respectively, compared to controls. Control mouse IgGs served as normalization control. Data are shown as mean± SEM.

Supplementary Figure 7. Endogenous APP (**A**), BACE1 (**B**), and Tau (**C**) mRNA levels following miR-16 mimic treatment. mRNA levels were measured by qRT-PCR (n=6/group). Statistical significance was assessed by parametric unpaired t test with Welch's correction, P<0.05 considered as statistical significant. GAPDH served as normalization control. Data are shown as mean± SEM. (**D**) Representative western blot of endogenous Tau (PHF1 epitope) following miR-16 mimic treatment (N=8/group). Blots were normalized to Gapdh. Statistical significance was determined by a *Student paired t* test.

Supplementary Figure 8. Nicastrin is directly regulated by miR-16. **(A)** Comparative bioinformatics analysis of putative miR-16 binding sites within the mouse or human Nicastrin 3'UTR. Results were taken from the miRWalk program. **(B)** Luciferase assay on wildtype human Nicastrin 3'UTR co-transfected with 50nM mimics (SCR or miR-16) in HEK293T cells. The cells were lysed 24hrs post-transfection and luciferase signal was measured (n=2 in triplicate). Statistical significance was assessed by one-way ANOVA with Bonferroni post-test (*p < 0.05).

Supplementary Figure 9. Physical interaction networks between putative miR-16 targets *in vivo*. Analysis was performed using the Germania software. Both up- and down-regulated proteins were used in these analyses. Black nodes indicate proteins identified in our proteomics analysis. Grey nodes indicate additional putative binding partners in these pathways based on bioinformatics.

SUPPLEMENTARY REFERENCES

- 1. Smith, P, Al Hashimi, A, Girard, J, Delay, C, and Hebert, SS (2011). In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. *Journal of neurochemistry* **116**: 240-247.
- 2. Hebert, SS, Papadopoulou, AS, Smith, P, Galas, MC, Planel, E, Silahtaroglu, AN, *et al.* (2010). Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. *Human molecular genetics* **19**: 3959-3969.

SUPPLEMENTARY TABLES

Supplementary Table 1. Protein changes in the brainstem and hippocampus of treated mice versus controls (n=4/group). A total of 103 proteins were significantly changed in the brainstem, including 47 upregulated (in red) and 55 downregulated (in green) proteins. A total of 16 proteins were misregulated in the hippocampus, including 5 upregulated (in red) and 11 downregulated (in green) proteins (fold change <0.8 and >1.2, P<0.05). Bioinformatics predictions were done by miRWalk.

Supplementary Table 2. DAVID gene enrichment analysis of top ranked targets identified in brainstem using Homo sapiens background.

		Brainstem						Predicted miR	-16 target site
No Accession	Gene name	Description	Score	95% Coverage	Number of peptides	RATIO mimics vs controls (brainstem)	p-value	3'UTR	Coding region
Q91XV3 Q35526	BASP1 STX1A	BASP1_MOUSE Brain acid soluble protein 1 STX1A MOUSE Syntaxin-1A	82,29 24,07	93% 56%	106 19	0,501 0.586	1,65E-07 8.92E-06		
P19536	COX5B	COX5B_MOUSE Cytochrome c oxidase subunit 5B, mitochondrial	21,66	53%	16	0,603	0,00121697		
P12787 Q53YX2	COX5A Thy1	COX5A_MOUSE Cytochrome c oxidase subunit 5A, mitochondrial Q53YX2_MOUSE CD90.1	39,45 12,01	69% 33%	33 19	0,614 0,618	0,000160624		
Q1MX42	Prkcd	Q1MX42_MOUSE Protein kinase C delta type	7,59	9%	5	0,65	0,0326449		
Q3TPT3 A2AQ25-4	Syt1 Skt	Q3TPT3_MOUSE Putative uncharacterized protein A2AQ25-4 Isoform 4 of Sickle tail protein	53,45 11,19	58% 7%	48 8	0,653 0,673	9,97E-05 0,00476251		
Q9D6J5	Ndufb8	NDUBB_MOUSE NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 8, mitochondrial	10	38%	9	0,674	0,00526244		
Q4VBC9 Q9CPQ1	Ndufb11 COX6C	Q4VBC9_MOUSE Ndufb11 protein (Fragment) COX6C_MOUSE Cytochrome c oxidase subunit 6C	10,71 17,85	41% 63%	6 11	0,679 0,685	0,0095815 0,000203329		
P56391 Q9D855	Cox6b1 QCR7	CX6B1_MOUSE Cytochrome c oxidase subunit 6B1 QCR7 MOUSE Cytochrome b-c1 complex subunit 7	13,62 17,77	70% 57%	20 15	0,685 0,695	0,00171406 0,000153512		
P31650	Slc6a11	S6A11_MOUSE Sodium- and chloride-dependent GABA transporter 3	20,84	16%	12	0,698	0,00502416		
Q9JKC6 Q60829	Cend1 Ppp1r1b	CEND_MOUSE Cell cycle exit and neuronal differentiation protein 1 PPR1B MOUSE Protein phosphatase 1 regulatory subunit 1B	15,54 18	57% 64%	19 12	0,7 0,702	0,000423472 0,004223		
P19783	Cox4i1	COX41_MOUSE Cytochrome c oxidase subunit 4 isoform 1, mitochondrial	14,86	43%	19	0,706	0,0155639		
P06837 Q9CQH3	Gap43 Ndufb5	NEUM_MOUSE Neuromodulin NDUBS MOUSE NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial	36,36 10	71% 21%	32 6	0,708 0,711	5,42E-07 0,0077551		
Q6ZWX2	Tmsb4x	Q6ZWX2 MOUSE Thymosin, beta 4, X chromosome	12,85	77%	11	0,712	0,0218587		
Q9CR61 Q8BGZ1	Ndufb7 Hpcal4	NDUB7_MOUSE NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 7 HPCL4_MOUSE Hippocalcin-like protein 4	14,31 18.91	58% 81%	8 23	0,718 0.722	0,0129444 0.000985372		
Q9DCT8	CRIP2	CRIP2_MOUSE Cysteine-rich protein 2	10,28	39%	7	0,723	0,0114881		
Q8BLF7 P11798	Slc2a3 Camk2a	Q8BLF7_MOUSE Putative uncharacterized protein KCC2A MOUSE Calcium/calmodulin-dependent protein kinase type II subunit alpha	16,87 59,38	13% 50%	11 75	0,731 0,731	0,00105785		
Q9QXV0	PCSK1	PCSK1_MOUSE ProSAAS	16,38	47%	12	0,732	0,000728901		
Q91X97 Q99JY8	NCALD LPP3	NCALD_MOUSE Neurocalcin-delta LPP3 MOUSE Lipid phosphate phosphohydrolase 3	14,01 11,31	74% 17%	25 8	0,735 0,74	0,0215997 0,0151303		
Q80YN3	BCAS1	BCAS1 MOUSE Breast carcinoma-amplified sequence 1 homolog	30,42	27%	23	0,743	1,08E-05		
Q3TYE5 P60840	Lsamp ENSA	Q3TYE5_MOUSE Limbic system-associated membrane protein ENSA_MOUSE Alpha-endosulfine	20,73 13,51	36% 70%	13 12	0,749 0,749	0,0426762		
P99028	QCR6	QCR6_MOUSE Cytochrome b-c1 complex subunit 6, mitochondrial	12,35	60%	8	0,756	0,0278268		
Q3UHX2 P51830	Pdap1 ADCY9	HAP28_MOUSE 28 kDa heat- and acid-stable phosphoprotein ADCY9_MOUSE Adenylate cyclase type 9	12,59 6,95	34% 4%	9 5	0,757 0,759	0,00129728		
054983	CRYM	CRYM_MOUSE Thiomorpholine-carboxylate dehydrogenase	27,14	51%	23	0,761	0,0168747		
P97450 P63321	ATP5J RALA	ATP5J_MOUSE ATP synthase-coupling factor 6, mitochondrial RALA_MOUSE Ras-related protein Ral-A	13,72 16	56% 43%	12 11	0,763 0,765	0,00373859 0,0349347		
Q8BLE7	Slc17a6	VGLU2_MOUSE Vesicular glutamate transporter 2	12,05	17%	8	0,765	0,00936656		
Q9CQZ1 O55042	HSBP1 Snca	HSBP1_MOUSE Heat shock factor-binding protein 1 SYUA_MOUSE Alpha-synuclein	8 26,02	80% 91%	6 31	0,765 0,766	0,0386879 0,0013887		
Q63810-2	Ppp3r1	Q63810-2 Isoform 2 of Calcineurin subunit B type 1	26,06	77%	28	0,769	0,00459909		
Q9D8B3 Q03517	Chmp4b SCG2	CHM4B_MOUSE Charged multivesicular body protein 4b SCG2_MOUSE Secretogranin-2	10,14 46,68	29% 48%	9 26	0,77 0,775	0,0217823 2,77E-07		
Q9DCS9	Ndufb10	NDUBA_MOUSE NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 10	18,01	57%	11	0,777	0,0128557		
Q9Z1G4-3 B1AS06	Atp6v0a1 Dlgap3	Q9Z1G4-3 Isoform A1-III of V-type proton ATPase 116 kDa subunit a isoform 1 B1AS06_MOUSE Disks large-associated protein 3	47,89 5,9	30% 5%	42 5	0,783 0,785	5,00E-07 0,0338111		
Q8C845 P31324	Efhd2 KAP3	Q8C845_MOUSE EF-hand domain-containing protein D2 KAP3_MOUSE cAMP-dependent protein kinase type II-beta regulatory subunit	24,4 35,3	51% 52%	18 18	0,788 0,788	0,000307613		
Q8BJH1	Zc2hc1a	ZC21A_MOUSE Zinc finger C2HC domain-containing protein 1A	12,01	19%	7	0,788	0,00215375		
Q9ER00 P61264	STX12 STX1B	STX12_MOUSE Syntaxin-12 STX1B_MOUSE Syntaxin-1B	15,15 43,3	35% 56%	11 38	0,79 0,79	0,0119414 1.78E-05		
Q9CQJ8	Ndufb9	NDUB9_MOUSE NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 9	16,19	48%	10	0,792	0,0217948		
Q3U2J2 Q58E70	Slc2a1 Tpm3	Q3U2J2_MOUSE Putative uncharacterized protein Q58E70_MOUSE Tpm3 protein	10,01 18	11% 49%	5 22	0,793 0,795	0,0463827 0,0242466		
A2A7R6	Hpca	A2A7R6_MOUSE Neuron-specific calcium-binding protein hippocalcin (Fragment)	36,76	79%	31	0,795	0,0258137		
Q8BTS0 Q9Z1N5	Ddx5 Ddx39b	Q8BTSO_MOUSE DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 DX39B MOUSE Spliceosome RNA helicase Ddx39b	45,74 27,42	44% 35%	29 17	1,199 1,2	0,0023451		
Q8VIJ6	Sfpq	SFPQ_MOUSE Splicing factor, proline- and glutamine-rich	49,54	42%	35	1,202	0,000109032		
Q8VDN2 Q9CT37	Atp1a1 Hnrnpr	AT1A1_MOUSE Sodium/potassium-transporting ATPase subunit alpha-1 O9CT37 MOUSE Putative uncharacterized protein (Fragment)	66,56 12.01	52% 31%	159 10	1,203 1,211	9,79E-07 0.0458658		
Q00P19	Hnrnpul2	HNRL2_MOUSE Heterogeneous nuclear ribonucleoprotein U-like protein 2	27,12	26%	17	1,213	0,00892075		
Q02357-5 Q9QZQ8-2	Ank1 H2afy	Q02357-5 Isoform 5 of Ankyrin-1 Q9QZQ8-2 Isoform 1 of Core histone macro-H2A.1	35,26 26,07	19% 38%	29 15	1,223 1,226	2,29E-05 0.00200346		
Q3UTJ2 Q497Z6	Sorbs2 Hmgb1	SRBS2_MOUSE Sorbin and SH3 domain-containing protein 2 O49726 MOUSE High mobility group box 1	15,78 15.14	8% 37%	10 14	1,231 1,233	0,0271742		
Q8K0S0	Phyhip	Q49726_MOUSE High mobility group box 1 PHYIP_MOUSE Phytanoyl-CoA hydroxylase-interacting protein	15,14	42%	14	1,233	0,015/343		
Q8BTM8 Q8R384	Fina Mvh11	FLNA_MOUSE Filamin-A O8R384 MOUSE Myh11 protein	31,45 32.51	12% 21%	23 38	1,24 1.24	0,0234162		
Q8BH44	Coro2b	COR2B_MOUSE Coronin-2B	23,59	31%	13	1,241	0,00286535		
Q6P4T2 O35381	Snrnp200 Anp32a	Q6P4T2_MOUSE Activating signal cointegrator 1 complex subunit 3-like 1 AN32A MOUSE Acidic leucine-rich nuclear phosphoprotein 32 family member A	16,42 20,06	7% 31%	13 15	1,242 1,242	0,0415583 0,0113832		
Q9JMF3	Gng13	GBG13_MOUSE Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-13	6,61	46%	5	1,252	0,0364961		
Q9CQ62 Q3UJU9	Decr1 Rmdn3	DECR_MOUSE 2,4-dienoyl-CoA reductase, mitochondrial RMD3 MOUSE Regulator of microtubule dynamics protein 3	14,11 13,61	24% 22%	7 9	1,255 1,258	0,0164508 0,0129001		
Q3UGY4	Sptb	Q3UGY4_MOUSE Putative uncharacterized protein	71,35	29%	57	1,262	6,69E-06		
A2A5R2 G3XA10	Arfgef2 Hnrnpu	BIG2_MOUSE Brefeldin A-inhibited guanine nucleotide-exchange protein 2 G3XA10 MOUSE Heterogeneous nuclear ribonucleoprotein U	8,74 36,21	4% 31%	6 25	1,264 1,264	0,0346823 5,20E-05		
D3YZV4	Kcnc3	D3YZV4_MOUSE Potassium voltage-gated channel subfamily C member 3	11,6	13%	6	1,28	0,0275812		
P14733 Q68FG2	Lmnb1 sptbn2	LMNB1_MOUSE Lamin-B1 Q68FG2_MOUSE Protein Sptbn2	46,05 171,89	44% 58%	28 139	1,285 1,286	2,81E-06 1,17E-16		
EOCXN5 Q3UHH0	Gpd1 Atp2b2	EOCXN5_MOUSE Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic	44,7 80.6	68% 39%	25 64	1,29 1,292	0,00073079 3.26E-07		
Q80VD1	Fam98b	Q3UHHO_MOUSE Putative uncharacterized protein FA98B_MOUSE Protein FAM98B	9,85	17%	5	1,297	0,0259779		
Q3U4Y0	H1f0	Q3U4Y0_MOUSE Putative uncharacterized protein	12	27%	9	1,297	0,041291 5.50E-06		
P20152 Q9WVK4	Vim Ehd1	VIME_MOUSE Vimentin EHD1_MOUSE EH domain-containing protein 1	68,44 33,52	75% 62%	29	1,316 1,333	0,000632995		
Q8C413 P28352	Dgkg Apex1	Q8C413_MOUSE Diacylglycerol kinase gamma APEX1 MOUSE DNA-(apurinic or apyrimidinic site) lyase	18,4 16,05	19% 38%	10 10	1,347 1,466	0,00102144 0,0323024		
PI00000E8E77		unknown [Mus musculus [10090]]	12,65	25%	8	1,512	0,000560151		
P32848 Q99NG1	Pvalb Slc1a3	PRVA_MOUSE Parvalbumin alpha Q99NG1 MOUSE Glutamate/aspartate transporter (Fragment)	20 21,1	77% 22%	12 36	1,518 1,532	0,000198945 0,0213031		
Q9JM96	Cdc42ep4	BORG4_MOUSE Cdc42 effector protein 4	10	16%	5	1,549	0,0279819		
P43276 Q64475	Hist1h1b Hist1h2bb	H15_MOUSE Histone H1.5 H2B1B MOUSE Histone H2B type 1-B	8,21 16,08	19% 43%	5 34	1,714 1,722	0,02542 0.0243785		
Q6ZQK5-2	Acap2	Q6ZQK5-2 Isoform 2 of Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2	6,39	7%	6	1,731	0,0222356		
Q8BQ28 P37804	Nck2 TagIn	Q8BQ28_MOUSE Putative uncharacterized protein TAGL_MOUSE Transgelin	4,96 18,77	11% 52%	3 11	1,735 1,751	0,0211423 0.000255131		
P12658	Calb1	CALB1_MOUSE Calbindin	25,76	67%	24	2,202	4,99E-08		
P11881-8 Q99JP6-2	Itpr1 Homer3	P11881-8 Isoform 8 of Inositol 1,4,5-trisphosphate receptor type 1 Q99JP6-2 Isoform 2 of Homer protein homolog 3	71,39 9,84	19% 22%	48 6	3,208 3,396	6,43E-19 0,000109871		
Q3TXM3	Slc1a6	Q3TXM3_MOUSE Putative uncharacterized protein	8	17%	10	3,784	0,000775311		
P28651	Ca8	CAH8_MOUSE Carbonic anhydrase-related protein	12.02	33%	6	4.709	6.54E-05	ı	

		Hippocampus					Predicted miR-16 target site		
No Accession	gene name	Description	Score	95% Converage	Number of peptides	RATIO mimics vs. control (hippocampus)	p-value	3'UTR	Coding region
P31725	S100a9	S10A9_MOUSE Protein S100-A9	6	30%	4	0,471	0,0039529		
Q8C872	Tfrc	Q8C872_MOUSE Transferrin receptor protein 1	4,39	7%	3	0,666	0,0373557		
Q8K0E8	Fgb	FIBB_MOUSE Fibrinogen beta chain	15	19%	8	0,671	0,0414647		
Q8C8M3	Stat1	Q8C8M3_MOUSE Putative uncharacterized protein	10,44	13%	7	0,714	0,00461793		
Q99K47	Fga	Q99K47_MOUSE Fibrinogen, alpha polypeptide	10,34	11%	5	0,736	0,00496785		
F6X7Z3	Cpeb1	F6X7Z3_MOUSE Cytoplasmic polyadenylation element-binding protein 1 (Fragment)	5,69	13%	3	0,747	0,0253883		
Q9QYT9	Prnpb	Q9QYT9_MOUSE Major prion protein	8,41	22%	7	0,768	0,030742		
Q6PAR5-6	Gapvd1	Q6PARS-6 Isoform 6 of GTPase-activating protein and VPS9 domain-containing protein 1	8,01	3%	5	0,771	0,0382554		
Q91X72	Нрх	HEMO_MOUSE Hemopexin	14,38	21%	7	0,78	0,00303796		
Q3UVL4	Vps51	VPS51_MOUSE Vacuolar protein sorting-associated protein 51 homolog	13,57	13%	8	0,785	0,0111839		
Q8BTI8	Srrm2	SRRM2_MOUSE Serine/arginine repetitive matrix protein 2	3,29	1%	4	0,798	0,0231391		
Q80TQ3	Nefh	Q80TQ3_MOUSE MKIAA0845 protein (Fragment)	68,1	34%	61	1,306	0,00336826		
P07309	Ttr	TTHY_MOUSE Transthyretin	8	30%	5	1,411	0,0244789	l	
P28651	Ca8	CAH8_MOUSE Carbonic anhydrase-related protein	12,02	33%	6	1,469	0,0400057		
Q925J6	Ptprn	Q925J6_MOUSE Protein tyrosine phosphatase receptor type N (Fragment)	5,24	4%	3	1,525	0,0386948	l	
Q3TCQ7	Tsc2	Q3TCQ7_MOUSE Putative uncharacterized protein	3,49	2%	4	1,799	0,0208798	l	

	Background: Homo capiers			
Category	Term Altheimer's disease Parkinson's disease	Count 14 12	% 15.1 12.9 12.9 12.9	P-Value Senjar 5:15-10 2:05-8 6:35-9 1:95-7
KEGG_PATHWAY	Culdative phosphorylation Huntington's disease Cardiac muscle contraction SWARC interactions in vesicular transport	12 12 12 7 3 4 5	12.9 12.9 7.5 3.2	\$16-40 2.05-8 6.36-9 1.96-7 7.56-9 1.56-7 2.36-6 4.86-5 5.66-4 4.26-2 2.56-1 5.26-2 2.86-1 6.46-2 2.76-1
	Grikk signaling pathway Calcium signaling pathway Cocyte melosis	4 5 4	7.5 3.2 4.3 5.4 4.3	
Category	Vascular mouth mucle cardination Term	Count	4.3 %	P-Value Benjar
	oxidative phosphorplation respiratory electron transport chain responsion of concurrent metabolites and assess	8 7		13% 4 13% 3 26% 6 88% 4 26% 7 3% 4 26% 6 12% 3 26% 6 12% 3 26% 6 12% 3 26% 6 12% 3 26% 6 12% 3 26% 3 26% 3
	electron transport chain mitochondrial ATP synthesis coupled electron transport ATP synthesis coupled electron transport	8 6	8.6 6.5	4.86-6 1.26-3 1.96-5 3.26-3 1.96-5 3.26-3
	cellular respiration mitochandrial electron transport, NADH to ubiquinone neurotransmitter transport	5 6	7.5 5.4 6.5	236-5 236-3 136-4 156-2 136-4 156-2
	regulation of centur component bugeness, energy deviation by oxidation of organic compounds, regulation of synaptic transmission oxidation endurates.	7 6	7.5 6.5 12.9	216-4 206-2 216-4 206-2 136-3 106-1 136-3 996-3
	industrial regulation of orbibar component organization regulation of transmission of nerve impulse regulation of patiels complex assembly regulation of neurological system process regulation of system process.	8 7 12 8 6 6 7 5 6 7 7 6 12 6 6 5 6 8 8 7 6 8 6 6 8 8	65 65 54	1.56-3 1.16-1 1.86-3 1.26-1 2.06-3 1.26-1
		6 8 8	8.6 8.6	2.16-9 1.26-1 2.36-9 1.26-1 2.36-9 1.46-1
	cessiar inschessional consigna seametray regulation of cellular inculturion regulation of action filament polymerization regulation of action polymerization regulation of action polymerization or depolymerization regulation of action filament insight regulation of or inflament insight regulation of or instrumental presentation regulation of present protection regulation of present protection regulation of present protection production of present protections.	7 4 8	7.5 4.3 8.6	25E-2 1.6E-1 4.0E-2 1.8E-1 5.1E-2 2.1E-1
	regulation of acts paymentation or depaymentation regulation of synaptic planticity regulation of synaptic planticity resolution of security securities.	4	43	6.16-3 2.36-1 6.66-3 2.36-1 6.67-3 2.36-1
	regulation of synaptic plansicity regulation of seventransumbare receivion worker-reduined transport regulation of seventransumbare levels regulation of resurtansumbare levels regulation of president polymerization synaptic transmission regulation of resurtansumbare transport	20 6 4	10.8 6.5 4.3	6.95-3 2.25-1 6.96-3 2.26-1 7.36-3 2.26-1
	regulation of protein polymerization synaptic transmission regulation of neurotransmitter transport positive regulation of transport	4 7 2	4.3 7.5 3.2	7.65-3 2.25-1 8.45-3 2.45-1 1.05-2 2.75-1
	postove regulation of transport actin cytoskeletion organization purite nucleotide biosynthetic process resettian resultation of writin filament noticessalization	6	65 54	116-2 2.56-1 1.16-2 2.86-1 1.16-2 2.86-1
GOTTERM, RP_SAT	protein stabilization nitrogen compound biosynthetic process negative regulation of organisis organization	2 7 4	3.2 7.5 4.3	136-2 2.86-1 136-2 2.86-1 136-2 2.86-1
	negative regulation of protein polymerization nucleocome assembly actin filament-based process.	4	4.3 6.5	136-2 2.86-1 136-2 2.96-1 1.86-2 2.96-1
	cytookeleton organization chromatin assembly ATP biosynthetic process	4	86 43 43	156-2 2.96-1 156-2 2.96-1 166-2 3.06-1
	regulation of actin cytoseverus organization macromolecular complex assembly protein GNA complex assembly	4 4	10.8	166-2 206-1 156-2 206-1 176-2 206-1
	protein-Other complex seasonaly protein-Other complex seasonally regulation of exceptionic regulate regulation of protein complex assembly regulation of actin filament-based process. transmission of nerve impulse.	4 7	3.2 4.3 7.5	1.76-2 2.06-1 1.76-2 2.06-1 1.76-2 2.06-1
	nucleocome organization regulation of vericle-mediated transport sectory perception of sound nuclear characteristics bioscentral bioscentral or produce characteristics to be produced by the contract produce characteristics and contract produces the contract of the contract produces the contract of the contract produces the contract produces the contract produces the contract produces the contract produces the contract produces p	4	43 43	1.86-2 3.06-1 1.86-2 3.16-1 2.06-2 3.16-1
	punne ribonucleoide triphosphate biosynthetic process punine nucleoide triphosphate biosynthetic process ribonucleoide triphosphate biosynthetic process resolution of rabbios removaer.	20 6 4 4 7 3 6 6 5 3 3 7 4 3 4 6 52 4 4 4 4 5 20 4 5 3 3 4 7 4 4 4 4 4 4 6 4 4 6 20 4 5 5 5 6 7 5 5 4 4 4 4 5 5 2 4 5		
	regulation of cellular component size nucleoside triphosphate bioxynthetic process sessary perception of mechanical stimulus positive regulation of neurotransmitter secretion.	4 4 2	43 43 22	236-2 336-1 236-2 336-1 236-2 336-1
	macromiecular complex subunit organization ATP metabolic process purine nucleotide metabolic process	20 4 5	10.8 4.3 5.4	2.65-2 3.36-1 2.65-2 3.36-1 2.65-2 3.36-1
	nucleotide biosynthetic process cell-cell signaling regulation of protein stability	5 9 2	9.7 3.2	2.65-2 3.36-1 2.66-2 3.36-1 2.66-2 3.36-1
	nucleobaw, nucleoside, nucleotide and nucleic acid biosynthetic nucleobaw, nucleoside and nucleotide biosynthetic pracess ourite ribonucleotide biosynthetic pracess.	5 4	5.4 5.4 4.3	276-2 356-1 276-2 356-1 326-2 386-1
	DNA packaging purine ribonucleoxide triphosphate metabolic process ribonucleoxide triphosphate metabolic process secretion by cell	4 4 5	43 43	8.8-2 3.86-1 3.86-2 3.86-1 3.86-2 4.86-1
	positive regulation of neurotransmitter transport purine nucleoside triphosphate metabolic process metamorrinologic resolution of some expression.	5 4 5	5.4 2.2 6.3 5.4	255-2 405-1 255-2 405-1 265-2 405-1 265-2 405-1
	ion transport ribonuclectide biosynthetic process chromatin assembly or dispasembly	20 4 4	10.8 4.3 4.3	3.76-2 4.96-1 3.76-2 4.96-1 3.96-2 4.26-7
	Constitution administrative production regulation of organism organization arguments framepoid regular regulation of cytoskeleton organization nucleoxide triphosphate metabolic process.	5 2 3	5.4 2.2 3.2	436-2 436-1 436-2 426-1 426-2 426-1
	nucleoside triphosphate metabolic process cation transport phosphorylation	20 4 5 2 2 4 8 20 4 4 4 2 7	43 86 108	636-2 626-1 636-2 646-1 666-2 646-1
	regulation of cytoskeleton organization purine ribonucleotide metabolic process ribonucleotide metabolic process reportungentitus untika	4 4 2	43 43	6.86-2 6.86-1 6.86-2 6.86-1 5.86-2 5.86-1
	phosphorus metabolic pracess phosphorus metabolic pracess phosphate metabolic pracess	5 11 11	7.5 11.8 11.8	5.96-2 5.16-1 6.06-2 5.16-1 6.06-2 5.16-1
	phosphate metabolic process: regulation of failufing locamotory behavior L-glutamate transport	4 5 2	43 54 22	626-2 526-1 7.96-2 6.06-1 8.06-2 6.06-1
	L-glutamate transport dicarbospiic acid transport RNA splicing acidic amino acid transport acino cytoletera morganization	2 5 2	22 54 22	856-2 636-1 876-2 636-1 9.16-2 6.46-1
	signal complex assembly positive regulation of cellular component organization	11 4 5 2 2 2 2 4 8 2 2 4 8 2 2 2 3	2.2 2.2 4.3	9.16-2 6.46-1 9.16-2 6.46-1 9.26-2 6.46-1
	intracellular transport response to interfession 1 regulation of cell projection organization neurological system process.	8 2 3	8.6 2.2 3.2 12.9	936-2 6.46-1 966-2 6.56-1 936-2 6.56-1 936-2 6.56-1
Category	Term	Count	% %	P-Value Benjarr
	inorganic cation transmembrane transporter activity cytoskeletal protein binding monovalent inorganic cation transmembrane transporter activity	11 16 8	11.8 17.2 8.6	285-8 8.16-6 3.65-7 5.36-5 3.65-6 3.36-4
	longanic cation transmentione transporter activity optobletcal protein binding manuscalent foreganic cation transmentiorate transporter activity hydrogen ion transmentiones transporter activity been copper reminical coldinar activity oxidoneductase activity, acting on heme group of danam, oxygen	11 16 8 7 5	11.8 17.2 8.6 7.5 5.4 5.4	285-8 8.16-6 265-7 5.26-5 245-6 2.26-4 1.96-5 1.46-3 245-5 1.46-3 245-6 1.46-3
	hydrogen ion transmembrane transporter activity heme-capper terminal oxidase activity	11 16 8 7 5 5 5	11.8 17.2 8.6 7.5 5.4 5.4 5.4 5.4	28E-8 8.1E-6 26E-7 5.2E-5 24E-6 1.8E-3 24E-5 1.4E-3 24E-5 1.4E-3 24E-5 1.4E-3 24E-5 1.4E-3 14E-4 6.2E-3 14E-4 6.2E-3
	hydrogen ion transmembrane transporter activity heme-copper terminal oxidate activity oxidoreductase activity, acting on heme group of donors, oxegen oxidoreductase activity, acting on heme group of donors oxochromes oxidate activity	21 26 8 7 5 5 5 5 5	118 172 86 75 54 54 54 54 54 54 54 54 54 54	285-8 825-6 286-7 526-5 286-6 286-4 186-5 1.86-3 286-5 1.86-3 286-5 1.86-3 286-5 1.86-3 186-4 6.76-3 186-4 6.76-3 186-4 6.76-3 186-4 6.76-3 186-4 6.76-3 186-4 6.76-3 286-6 9.86-3
	Hydrogen iso transmendrane transporter activity here-capper femilia cultius activity oxidoreductase activity, acting on heres group of donors, oxygen oxidoreductase activity, acting on heres group of donors option mer c activities activity option activities activities activity activities activities activities ACMS of hydrogeniare (abliquinore) activity activities activi	11 16 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11.8 17.2 8.6 7.5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5	286-8 216-6 266-7 526-5 266-6 286-4 186-5 146-3 266-5 146-3 266-5 146-3 266-5 146-3 266-5 146-3 266-5 146-3 266-5 146-3 146-4 626-3 146-4 626-3 146-3 466-3 146-4 626-3 146-3 466-3 146-3 466-3 146-3 146-3 466-3 146-3 466-3 146-3
	I hydrogen in transmendouse transporter activity free compare manifest activity free compare manifest activity free compare manifest and activity free confidences activity. Acting as home group of discours, suggest outcomes activity free confidences activity. Mode designations activity free confidences activity free confidences activity free confidences activity activity activity free confidences activity free confidences activity activity activity free confidences activity activity free confidences activity activities act	11 16 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11.8 17.2 8.6 7.5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5	2854 8.54 3857 5254 3856 1.854 1855 1.854 2855 1.854 2855 1.854 2855 1.854 2855 1.854 1854 6.754 1854 6.754 1854 7.854 1854 2.854 1853 2.854 1853 2.854 1853 2.854 1853 2.854 1853 2.854 1853 2.854 1853 2.854 1853 2.854
	hydrogen in transmendors transporter statisty confidence transporter statisty confidence and transporter statisty confidence and transporter statisty, as from purpose of distracts and transporter statisty. All of designations and transporter statisty with a statistic statisty. All of designations and transporter statisty and transporter statisty.	11 16 8 7 16 16 16 16 16 16 16 16 16 16 16 16 16	11.8 17.2 8.6 7.5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5	2854 8.556 2857 2854 2856 2254 2856 2254 2856 1.653 2856 1.653 2856 1.853 285
GOTERM, MF_JAT	I hydrogen in transmendouse transporter activity free compare manifest activity free compare manifest activity free compare manifest and activity free confidences activity. Acting as home group of discours, suggest outcomes activity free confidences activity. Mode designations activity free confidences activity free confidences activity free confidences activity activity activity free confidences activity free confidences activity activity activity free confidences activity activity free confidences activity activities act	11 12 12 7 12 12 12 12 12 12 12 12 12 12 12 12 12	11.8 17.2 8.6 7.5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5	2864 8 856 3867 5 386 3866 2 386 3866 2 386 3866 2 386 3866 2 386 3866 2 386 3866 2 386 3866 2 386 3866 2 386 3866 2 386 3866 2 386 3866 2 386 3866 2 386 3866 2 386 3867 2 386
GOTERNA, NO. JAST	Angeles in the controller of transports collectly and controller of transports of the controller of th	22 26 27 25 25 25 25 25 25 25 25 26 26 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	11.8 17.2 8.6 7.5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5	2868 8 256 2866 2 3864 2866 2 3864 2866 1 4663 2866 1
GOTEBBA, MJ, JAT	hydrogen in transmendors transporter statisty confidence transporter statisty confidence and transporter statisty confidence and transporter statisty, as from purpose of distracts and transporter statisty. All of designations and transporter statisty with a statistic statisty. All of designations and transporter statisty and transporter statisty.	22 22 22 27 22 22 22 22 22 23 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	11.8 17.2 8.6 7.5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5	3864 8156 3664 3164 3664 3164 31661 1661 3665 1661 3666
GOTIBBE, MF, JAT	Angeles in the controller of transports collectly and controller of transports of the controller of th	22 M B 7 S S S S S S S S S S S S S S S S S S	11.8 17.2 8.6 7.5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5	116-2 136-1 246-2 236-1 266-2 236-1 256-2 236-1 416-2 236-1 426-2 246-1 516-2 446-1 556-2 446-1
GOTTEMM, MP, FAT	Angeles in terminalism transports called a construction of the con	22 M R 7 S S S S S S S S S S S S S S S S S S	11.8 17.2 8.6 7.5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5	116-2 136-1 246-2 236-1 266-2 236-1 256-2 236-1 416-2 236-1 426-2 246-1 516-2 446-1 556-2 446-1
GOTTOMA_MM_JAST	And present the control of the contr		1118 25 25 25 25 25 25 25 25 25 25 25 25 25	116-2 1.36-1 246-2 2.36-1 246-2 2.36-1 416-2 2.36-1 416-2 2.36-1 516-2 4.66-1 546-2 4.56-1 646-2 4.36-1 746-2 4.36-1 746-2 4.36-1 746-2 4.36-1 746-2 4.36-1 746-2 4.36-1 746-2 5.36-1 746-2 5.36-1
GOTTOMA 146 JASŤ	An experimental continuous contin		1118 25 25 25 25 25 25 25 25 25 25 25 25 25	116-2 1.36-1 246-2 2.36-1 246-2 2.36-1 416-2 2.36-1 416-2 2.36-1 516-2 4.66-1 546-2 4.56-1 646-2 4.36-1 746-2 4.36-1 746-2 4.36-1 746-2 4.36-1 746-2 4.36-1 746-2 4.36-1 746-2 5.36-1 746-2 5.36-1
GOURGE, M. J. AT	For Engineering Continues of the Continu	11 16 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11.8 17.2 8.6 7.5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5	116-2 136-1 246-2 236-1 266-2 236-1 256-2 236-1 416-2 236-1 426-2 246-1 516-2 446-1 556-2 446-1
бегенции уле Сегенции	A region of the control and th	5 5 5 5 6 6 5 6 7 7 2 8 5 2 2 2 2 8 2 2 2 Count	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
German, me jaer	A region of the control and th	5 5 5 5 6 6 5 6 7 7 2 8 5 2 2 2 2 8 2 2 2 Count	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
опписан заг Описан	For the control of th	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
осниции да г станува	For the control of th	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
GETTION, MF J.EF	For the control of th	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
беняк, м. ; и сеняк, м. ; и	For the control of th	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
сопанция умя Сопанция	A segretary of the control of the co	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
бегаме, ме зае Сабарну	A segretary of the control of the co	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
сопиции для Сопиции	A seguine to extract content of the	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
GERORAL ME JAS	A seguine to extract content of the	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
GOTTON, M. JAN	An experience of the control of the	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
GOTORI, M. JAS GOTORI, M. JAS GOTORI, M. JAS	An experience of the control of the	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
German, ser, ser Colongory	An experience of the control of the	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
GOTTON, M. JAS GOTTON, M. JAS GOTTON, M. JAS	An experience of the control of the	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
GOTTON, MF J. AT GOTTON, MF J. AT GOTTON, MF J. AT	An experience of the control of the	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
GOTTON, M. JAT GOTTON, G. JAT	An experience of the control of the	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
GOTORI, M. JAS GOTORI, M. JAS GOTORI, M. JAS	A region of the control of the contr	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
сопин, м. да г	An experience of the control of the	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127 127 127 127 127 127 127 127 127
COTTON JAS COTTON JAS COTTON JAS	An experience of the control of the	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127-127-127-127-127-127-127-127-127-127-
GOTTON, M. J. ST. GOTTON, M. J. ST. GOTTON, M. J. ST. GOTTON, M. J. ST.	Neglectic and control	5 5 5 6 6 5 6 7 3 2 5 4 4 3 3 4 4 4 5 5 7 2 3 3 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1117 127-127-127-127-127-127-127-127-127-127-
бетом, м. даг бетом, м. даг	An experience of the control of the	5 115 6 6 5 6 7 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1112 86 54 54 54 54 55 5	1162 1262 1274 1262 1262 1262 1262 1262 1262 1262 126